Noticias Sociales welcome | submit login | signup
Catalytic corrosion of CH4 in to CH3OH employing C24N24-supported single-atom switch. (selleckchem.com)
1 point by timebetty65 4 months ago

Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. #link# In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-ang fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.Real-time time-dependent density functional theory (RT-TDDFT) and ab initio molecular dynamics (AIMD) are combined to calculate non-resonant and resonant Raman scattering cross sections of periodic systems, allowing for an explicit quantum mechanical description of condensed phase systems and environmental effects. It is shown that this approach to Raman spectroscopy corresponds to a short time approximation of Heller's time-dependent formalism for the description of Raman scattering. Two ways to calculate the frequency-dependent polarizability in a periodic system are presented (1) via the modern theory of polarization (Berry phase) and (2) via the velocity representation. Both approaches are found to be equivalent for a system of liquid (S)-methyloxirane with the computational settings used. Resulting non-resonance and resonance Raman spectra from the dynamic AIMD/RT-TDDFT approach are compared to the spectra of one gas phase molecule in the harmonic approximation highlighting finite temperature and solvation effects. Using RT-TDDFT to calculate the full frequency-dependent Placzek-type polarizability within one set of simulations covers the non-resonance, near-resonance, and on-resonance regimes on equal footing, thus allowing the calculation of full Raman excitation profiles.Liquid-liquid emulsion systems are usually stabilized by additives, known as surfactants, which can be observed in various environments and applications such as oily bilgewater, water-entrained diesel fuel, oil production, food processing, cosmetics, and pharmaceuticals. One important factor that stabilizes emulsions is the lowered interfacial tension (IFT) between the fluid phases due to surfactants, inhibiting the coalescence. Many studies have investigated the surfactant transport behavior that leads to corresponding time-dependent lowering of the IFT. For example, the rate of IFT decay depends on the phase in which the surfactant is added (dispersed vs continuous) due in part to differences in the near-surface depletion depth. Other key factors, such as the viscosity ratio between the dispersed and continuous phases and Marangoni stress, will also have an impact on surfactant transport and therefore the coalescence and emulsion stability. In this feature article, the measurement techniques for dynamic IFT are first reviewed due to their importance in characterizing surfactant transport, with a specific focus on macroscale versus microscale techniques. Next, equilibrium isotherm models as well as dynamic diffusion and kinetic equations are discussed to characterize the surfactant and the time scale of the surfactant transport. Furthermore, recent studies are highlighted showing the different IFT decay rates and its long-time equilibrium value depending on the phase into which the surfactant is added, particularly on the microscale. Finally, recent experiments using a hydrodynamic Stokes trap to investigate the impact of interfacial surfactant transport, or "mobility", and the phase containing the surfactant on film drainage and droplet coalescence will be presented.With increasing amounts of oily water discharged from industrial and domestic sources, purifying oily emulsions using effective and eco-friendly methods is of great significance. Although functional membranes with selective wettabilities have been extensively explored for the efficient purification of oil-in-water emulsions, the development of functional membranes that use green and inexpensive materials, are simple to fabricate, and are easy to scale up remains very challenging. Herein, we report a simple approach that uses biomass to prepare a membrane for the purification of emulsions. A simple top-down approach was used to partially remove lignin and hemicellulose fractions in wood sheets, resulting in a highly porous and flexible wood membrane. The obtained wood membrane shows excellent water-absorbing and underwater anti-oil adhesion properties due to the removal of the hydrophobic lignin. The wood membrane is durable and stable, thereby maintaining its selective wettability in harsh environments. Selective wetting properties along with a porous structure enable the wood membrane to purify surfactant-stabilized oil-in-water emulsions. Such a biomass-derived membrane, which is green, inexpensive, easy to fabricate, and scalable, along with its selective wettability and durability, shows great potential for use as a substitute for existing filter media in diverse industries.In a study aimed at identifying new anti-prion compounds we screened a library of 500 Australian marine invertebrate derived extracts using a yeast-based anti-prion assay. This resulted in an extract from the subtropical sponge Lamellodysidea cf. chlorea showing potent anti-prion activity. The bioassay-guided investigation of the sponge extract led to the isolation of three new bioactive polyoxygenated steroids, lamellosterols A-C (1-3). These sterols were all isolated in low yield, and their structures elucidated by extensive NMR and MS data analysis. Lamellosterols A-C displayed potent anti-prion activity against the [PSI+] yeast prion (EC50s of 12.7, 13.8, and 9.8 μM, respectively). Lamellosterol A (1) was further shown to bind to the Parkinson's disease implicated amyloid protein, α-synuclein, and to significantly inhibit its aggregation. Our findings indicate that these polyoxygenated sterol sulfates may be useful compounds to study mechanisms associated with neurodegenerative diseases.




Guidelines | FAQ